- holomorphic form
- мат.голоморфная форма
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
holomorphic — [häl΄ōmôr′fik, hō΄ləmôr′fik] adj. [ HOLO + MORPHIC] having the two ends symmetrical in form: said of a crystal … English World dictionary
Holomorphic functional calculus — In mathematics, holomorphic functional calculus is functional calculus with holomorphic functions. That is to say, given a holomorphic function fnof; of a complex argument z and an operator T , the aim is to construct an operator:f(T),which in a… … Wikipedia
Holomorphic function — A rectangular grid (top) and its image under a holomorphic function f (bottom). In mathematics, holomorphic functions are the central objects of study in complex analysis. A holomorphic function is a complex valued function of one or more complex … Wikipedia
Mock modular form — In mathematics, a mock modular form is the holomorphic part of a harmonic weak Maass form, and a mock theta function is essentially a mock modular form of weight 1/2. The first examples of mock theta functions were described by Srinivasa… … Wikipedia
Modular form — In mathematics, a modular form is a (complex) analytic function on the upper half plane satisfying a certain kind of functional equation and growth condition. The theory of modular forms therefore belongs to complex analysis but the main… … Wikipedia
Complex differential form — In mathematics, a complex differential form is a differential form on a manifold (usually a complex manifold) which is permitted to have complex coefficients. Complex forms have broad applications in differential geometry. On complex manifolds,… … Wikipedia
Jordan normal form — In linear algebra, a Jordan normal form (often called Jordan canonical form)[1] of a linear operator on a finite dimensional vector space is an upper triangular matrix of a particular form called Jordan matrix, representing the operator on some… … Wikipedia
Siegel modular form — In mathematics, Siegel modular forms are a major type of automorphic form. These stand in relation to the conventional elliptic modular forms as abelian varieties do in relation to elliptic curves; the complex manifolds constructed as in the… … Wikipedia
Connection form — In mathematics, and specifically differential geometry, a connection form is a manner of organizing the data of a connection using the language of moving frames and differential forms. Historically, connection forms were introduced by Élie Cartan … Wikipedia
Volume form — In mathematics, a volume form is a nowhere zero differential n form on an n manifold. Every volume form defines a measure on the manifold, and thus a means to calculate volumes in a generalized sense. A manifold has a volume form if and only if… … Wikipedia
Positive form — In complex geometry, the term positive form refers to several classes of real differential formsof Hodge type (p, p) . (1,1) forms Real ( p , p ) forms on a complex manifold M are forms which are of type ( p , p ) and real,that is, lie in the… … Wikipedia